Rolex’s new Land-Dweller watch model’s movement presents a novel escapement that is well worth a closer look. What are its key features – and which inherent limitations of the Swiss lever escapement does it aim to overcome?
Understanding escapements
The escapement in a mechanical watch is essential: without it, the mainspring would cause the gear train and hands to unwind at breakneck speed – and after just a few seconds, everything would come to a halt. Together with the balance wheel, the escapement regulates the gear train, ensuring accurate timekeeping.
Today, the Swiss lever escapement is used in 99 percent of all mechanical watches. In 2015, Rolex introduced the Chronergy escapement, which increased the efficiency of the Swiss lever design by 15 percent thanks to lightweight construction and optimised geometry. Now, Rolex has presented a new escapement that goes much further. It operates without a traditional lever, instead using two escape wheels, and is reminiscent of Breguet’s natural escapement.
To understand the strengths and weaknesses of the various escapement types, we need to take a closer look.
Anchors for all
In 1757, Thomas Mudge invented the lever escapement. Subsequently refined over the years, it is today ubiquitous in the form of the Swiss lever escapement. Let us briefly recall how it works: one of the lever’s two ruby pallets halts a tooth of the escape wheel with its outer face. As the balance swings back, it moves the lever, which releases the tooth. This then slides over the impulse face of the opposite pallet, transferring energy to the lever, which in turn delivers it to the balance. The second pallet functions in the same way – with the difference that, due to the geometry of the lever, it delivers the impulse in the opposite direction of the swing.
The Swiss lever escapement offers many advantages: it is robust, allows the balance to restart from a standstill, can be finely adjusted, and is suited to industrial production. It is also precise, as it involves relatively little friction – provided it is well lubricated. And this brings us to its main weakness: if it is insufficiently lubricated or the oil dries out, the movement stops. The sliding friction, even with the optimised combination of ruby and steel, results in too much energy loss. Alongside magnetic interference, this remains one of the most common reasons why a watch needs servicing. This issue already occupied the mind of Abraham-Louis Breguet. At the time, lubricants were far less effective than they are today.
Natural Escapements
In 1789, Breguet developed the échappement naturel – the natural escapement. In essence, he modified the chronometer escapement he had created a decade earlier, which functioned without lubrication. That earlier system delivered an impulse to the balance in only one direction, making it suitable for marine chronometers but not for pocket watches, as the balance would not restart on its own if stopped by a shock.
Breguet’s complex natural escapement differed from the lever escapement in several key respects: instead of a single escape wheel, it used two interconnected escape wheels, and a detent-style lever in place of a traditional anchor. The fundamental difference: while the detent lever – like the anchor before it – was moved by the balance and locked the escape wheels, the impulse was no longer transmitted via the anchor, but directly from the escape wheels to the balance, which had two ruby impulse pallets for this purpose. Unlike the chronometer escapement, this meant the impulse was delivered in both directions. As a result, the escapement was self-starting and operated without lubrication.
However, Breguet only fitted around 20 pocket watches with this system and otherwise continued to use the lever escapement. One reason was the complexity of the natural escapement – only his most skilled watchmakers were capable of assembling and adjusting it. In addition, the second escape wheel introduced more friction, and the backlash and play between teeth created a degree of instability.
Beginning in the 1980s, several systems based on Breguet’s natural escapement were developed, largely thanks to the pioneering work of George Daniels, who had long been researching lubrication-free escapements. In 1982, Daniels built a version of the natural escapement into his pocket watch Space Traveller I, using two separate gear trains and individual mainspring barrels to power the two escape wheels independently – a design that addressed the issues of friction and backlash. In 1997, Derek Pratt experimented with spiral springs on the escape wheels.
Later, new manufacturing techniques and materials made it possible to overcome some of the earlier limitations. Kari Voutilainen, François-Paul Journe and Laurent Ferrier all created watches using versions of the natural escapement.
Ulysse Nardin took things one step further in 2001 with the revolutionary Freak, developed by Ludwig Oechslin. In the Dual Direct escapement, the two escape wheels were not connected by gears on a shared axis, but instead meshed directly with each other. Five extended teeth on each wheel delivered impulses directly to the balance. In addition, the wheels were made from silicon – extremely lightweight, low-friction, and manufactured to exceptionally tight tolerances.
And what about Omega’s Co-Axial escapement? Is it a natural escapement or a lever escapement? The mechanism developed by George Daniels is essentially a hybrid: it uses only a single escape wheel, and the balance receives an impulse in both directions (meaning it is self-starting). However, only one of those impulses comes directly from the escape wheel; the other is transmitted indirectly via the lever. The geometry of the system eliminates the need for an inclined plane during energy transmission. In theory, the escapement should function without lubrication – but Omega has found that oiling the pallets still improves performance.
Ulysse Nardin’s Further Development
In 2005, Ulysse Nardin introduced the Dual Ulysse escapement in the second generation of the Freak. This system, also developed by Ludwig Oechslin, retained the two interlocking escape wheels, but they no longer delivered the impulse directly to the balance. Instead, energy was transmitted indirectly via a lever – much like in the traditional lever escapement.
The symmetrical mechanism operates as follows: first, a recess in a tooth on the left escape wheel locks into the upper arm of the lever, halting its motion. When the balance moves the upper part of the lever to the right, the right-hand wheel is released, and a tooth from the left wheel engages the lower part of the lever, which then delivers the impulse to the balance. The same process then occurs on the opposite side.
The escapement remains lubrication-free, as no sliding friction occurs. Compared to the Dual Direct escapement, it offers several advantages: it rotates more slowly, which makes it compatible with a faster-beating balance at 28,800 vibrations per hour, is highly reliable, and delivers the impulse close to the balance’s point of rest – allowing the balance to swing freely for most of its cycle.
The lift angle was also reduced from 70 to 36 degrees – a figure that surpasses the approximately 50 degrees of the Swiss lever escapement.
The New Rolex Escapement
In January 2025, Rolex was granted two patents relating to a new escapement. Both follow the general principle of the Dual Ulysse escapement, which is cited as a reference in the patent documents.
The version used in Rolex’s new Land-Dweller draws on the design of the first Ulysse escapement, in which each escape wheel has five extended teeth – though in Rolex’s version, these teeth are asymmetrical. They interact with the balance via a central lever and are responsible for both locking and impulse transmission. The outer faces of the lever’s forked tips halt the escape wheels via the extended tooth, while the inner surface delivers the impulse. This takes place in a manner similar to gear teeth, using the pointed tip of the long tooth to avoid any sliding friction – meaning the Rolex escapement should also function without lubrication.
One advantage of Rolex’s design: the central lever is significantly larger, which means it does not require such tight manufacturing tolerances and is therefore easier to produce than Ulysse Nardin’s version. In addition, the outer faces of the fork are slightly convex, making the escapement less sensitive to shocks. It may even be possible to do without limit pins to constrain the lever’s motion.
Since no pallets are used and the escape wheels must be extremely lightweight and precisely shaped, the system – like the Dual Ulysse escapement – is realised using silicon wheels manufactured through deep reactive ion etching. The material also compensates for the added friction and inertia of the second escape wheel. Thanks to its dual impulse delivered near the balance’s point of rest, the escapement is self-starting. The mechanism is reportedly capable of operating with high-frequency movements, even up to 10 Hz.
Until now, Rolex has been relatively conservative in its use of materials like silicon. The silicon hairspring, co-developed with Patek Philippe and the Swatch Group, has only been used in the small calibre 2236 for women’s watches and in calibre 7140 for the 1908. Elsewhere, the brand continues to rely on the Parachrom hairspring, made from a proprietary metal alloy. Even in the Chronergy escapement, Rolex has stuck with traditional metals – despite the fact that using silicon could have reduced the weight even further.
Rolex’s Second New Escapement
The second escapement patented by Rolex has not yet been implemented. It is of a more traditional design, and the two escape wheels could likely be produced from metal using the LIGA process. While the central lever closely resembles that of the first Rolex patent, the escape wheels differ significantly: instead of integrating all functions on a single level, the mutual drive is transferred to gears positioned on a lower plane.
Does this offer any advantages? Not really. While it would indeed allow the escape wheels to be made from metal, the additional gear stage would increase weight, and the lever would still need to be manufactured from silicon, since its shape cannot accommodate ruby pallets.
Whether this escapement is a viable option for the future – or merely intended to mislead potential competitors – remains open to speculation.
Conclusion: Better Escapements
The fact that the Swiss lever escapement has become the dominant system does not necessarily mean it is the best. It has clear limitations. Thanks to visionary watchmakers and inventors such as Breguet and Daniels, the pursuit of better alternatives has continued. Today, new materials and manufacturing technologies are enabling systems that were previously impossible to realise.
Omega succeeded in industrialising a lubrication-free escapement with its Co-Axial system and producing it on a large scale. Now, Rolex is poised to manufacture a lubrication-free escapement in significant quantities as well. It is to Rolex’s credit that, despite its dominant market position, the company continues to innovate – and turns that innovation into tangible results.
At Watches and Wonders 2025, Tudor is turning a new page – while remaining true to its proven strengths. Among this year’s novelties are the Pelagos Ultra, offering an impressive water resistance of 1,000 metres; the Black Bay 68 – an entirely new model with a 43-millimetre case; and an updated version of the Black…
The Bauhaus movement celebrates its 100thanniversary this year and still today stands for functionality and aesthetics. Due to the industrialization, Bauhaus manifested a basic philosophy to preserve the artistic work and bring it in line with the raising engineering sciences. The aim was to grant a broad audience access to quality products. Typical design elements…
Since its establishment in 1972, Porsche Design’s watch collection has been steadily growing. The 1919 Collection, which was first introduced in 2015, is dedicated to the Porsche car series. This year, the new collection is inspired by the famous 911 series that Professor Ferdinand Alexander Porsche designed 54 years ago! The design and technology of…
With 981 lots between them, the four most important auction houses – Phillips, Christie's, Sotheby's and Antiquorum – reached an impressive 110 million Swiss francs last week. Phillips, in cooperation with Bacs and Russo, succeeded in confirming its leading role as an auctioneer of valuable collector's watches. All 203 of the 203 lots offered by…
It’s a topic that every OMEGA Speedmaster fan must have an opinion on – when it comes to protecting the dial, which is better: hesalite or sapphire crystal? In this article, we will be arguing the case for keeping it old-school, while also explaining why some choose the more contemporary, "luxurious" option of sapphire crystal.…
Exactly 80 years ago, Willy Breitling received a patent for a chronograph with a circular slide rule. It was the birth of the now age-old Chronomat that two years later, in 1942, was first presented to the public with Reference 769. The name Chronomat is derived from the words chronograph and mathematics. This is because,…
Audemars Piguet is not only celebrating its 150th anniversary this year, but also bidding farewell to the calibre 5135 after almost a decade in production. However, this special automatic movement with perpetual calendar is not simply disappearing without a trace. Rather, it is being produced one the last time, as it shows off its best…
It’s been another extraordinary year for us all, and the watch world is no exception. That's why the Swisswatches team sat down once more to compile a list of our top watches from 2024. From milestone models and innovative materials to historic revivals, we present you with 24 special highlights to emerge from the ever-surprising…
Some anniversaries are celebrated with confetti and champagne. Others mark their place in history with an event that redefines their own work. Vacheron Constantin chose the latter for its 270th birthday: the presentation of Les Cabinotiers Solaria Ultra Grande Complication – La Première. A unique piece, a supernova of watchmaking, a new world record for the…
Initially debuted in 1979, the Piaget Polo 79 has been a big talking point for us at Swisswatches ever since its revival last year, as reported on in great detail by my colleague Nico Bandl. It is a beautiful watch – and an undeniably grand watch, available up until now, true to the original, in…
When Swatch announced its unprecedented collaboration with Omega last year, it triggered criticism, curiosity, but above all, surprise. Surprise that Omega, a brand that usually stands for watches in the higher-priced segment, was launching a significantly more affordable watch. The MoonSwatch, a €250 watch made of bioceramic and inspired by the famous Omega Speedmaster Professional,…
If there is one certain field that always strives for new material to make their products lighter (and hence more performing) then it is that of racing cars. And if there is a watch brand that strives for these same goals then it must be Richard Mille. So it is quite obvious that both fields…
It's been another extraordinary year for us all, and the watch world is no exception. That is why the Swisswatches team sat down once more to comprise a list of our top watches of 2021. From horological giant OMEGA to independent watchmaker Armin Strom, we are presenting you with 24 special highlights to emerge from…